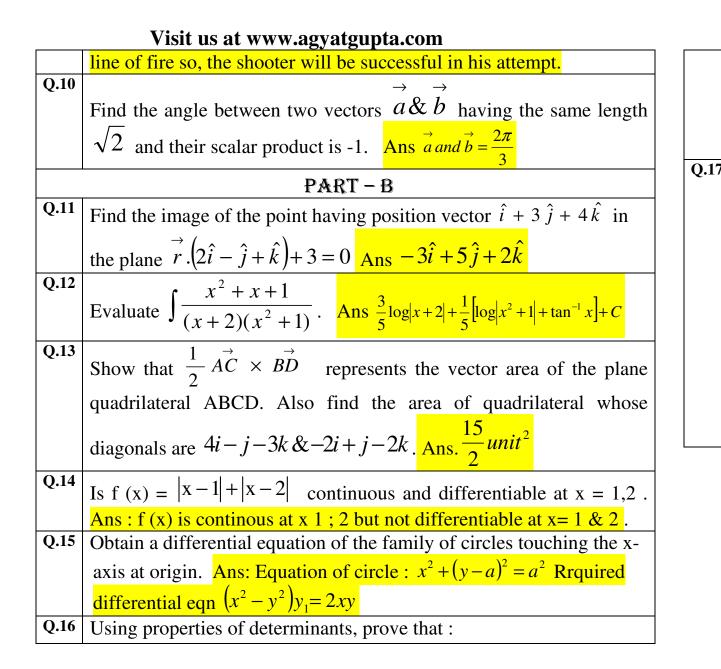


Visit us at www.agyatgupta.com

CODE:- AG-TS-8-3689

General Instructions :-

- 1. All question are compulsory.
- The question paper consists of 26 questions divided into three sections A,B and C. Section A comprises of 6 question of 1 mark each. Section B comprises of 13 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each .
- 3. There is no overall choice. However, internal choice has been provided in 4 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 4. Use of calculator is not permitted.
- 5. Please check that this question paper contains 6 printed pages.
- 6. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.


canaldate.						
CLASS – XII			CBSE	MATHEMATICS		
Time : 3 Hours				Maximum Marks : 100		
PRE-BOARD EXAMINATION 2013-14						
PART – A						
Q.1	Prove	that	$:\sin\left(2\tan^{-1}\frac{1}{3}\right)+\cos\left(2\tan^{-1}\frac{1}{3}\right)$	$s(\tan^{-1} 2\sqrt{2}) = \frac{14}{15}$. Ans		

	Visit us at www.agyatgupta.com						
	$2\tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{3}{4}\right) = \sin^{-1}\left(\frac{3}{5}\right) \& \tan^{-1}\left(2\sqrt{2}\right) = \cos^{-1}\left(\frac{1}{3}\right) \frac{3}{5} + \frac{1}{3} = \frac{14}{15}$						
Q.2	If $\int_{0}^{1} (3x^{2} + 2x + k)dx = 0$, find the value of k. Ans.k = -2						
Q.3	If $A^T = \begin{bmatrix} -2 & 3 \\ 1 & 2 \end{bmatrix} \& B = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$ then find $(A + 2B)^T$. ANS:						
	$\begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}$						
Q.4	If the binary operation * on the set of integers Z, is defined by						
	$a * b = a + 3b^2$, then find the value of 2 * 4. {Ans.50						
Q.5	If $ \vec{a} + \vec{b} = \vec{a} - \vec{b} $ then find the angle between \vec{a} and \vec{b} . Ans $\frac{\pi}{2}$.						
Q.6	Find the value of λ , so that the lines $\frac{1-x}{3} = \frac{7y-14}{2\lambda} = \frac{5z-10}{11}$ and						
	$\frac{7-7x}{3\lambda} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular to each other {Ans. $\lambda = 7$						
Q.7	Evaluate $\int \frac{dx}{x \cos^2(1 + \log x)}$. Ans $I = \tan(1 + \log x) + c$.						
Q.8	A matrix X has $(a+b)$ rows and $(a+2)$ columns while the matrix Y						
	has (b+1) rows and (a+3) columns. Both the matrices XY and YX						
	exist. Find the values of a and b . $ANS : a = 2 \& b = 3$						
Q.9	From the point A (2, 3, 8) in space, a shooter aims to hit the target at						
	P (6, 5, 11). If the line of fire $\frac{x-2}{4} = \frac{y-3}{2} = \frac{z-8}{3}$, what do you think						

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : 9425109601; 9425110860; 9425772164(P)
 2

about the success of the shooter? ans : Since both the points lie on the

Visit us at www.agyatgupta.com

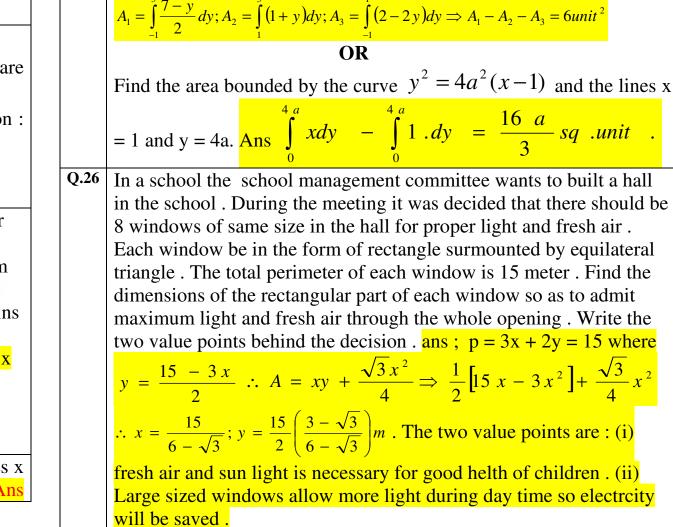
$$\begin{vmatrix} a^{2} + 1 & ab & ac \\ ab & b^{2} + 1 & bc \\ ca & cb & c^{2} + 1 \end{vmatrix} = (1 + a^{2} + b^{2} + c^{2}).$$
Find the particular solution, satisfying the given condition, for the following differential equation .

$$\frac{dy}{dx} - \frac{y}{x} + \cos ec \left(\frac{y}{x}\right) = 0, y = 0 \text{ when } x = 1 \text{ Ans}:$$

$$\frac{\log|x| + \log e = \cos \frac{y}{x} \Rightarrow \log|ex| = \cos \frac{y}{x}}{OR}$$
Solve the differential equation
$$\left[\frac{e^{-2\sqrt{y}}}{\sqrt{y}} - \frac{x}{\sqrt{y}}\right] \frac{dy}{dx} = 1; (y \neq 0)$$
and $y(1) = 2$. ANS : Ans

3

	Visit us at www.agyatgupta.com		Visit us at www.agyatgupta.com
	$\begin{bmatrix} e^{-2\sqrt{y}} & x \end{bmatrix} dy = 1 + (x + 0)$		while . Taking measurements .
	$\left \frac{e^{-2\sqrt{y}}}{\sqrt{y}} - \frac{x}{\sqrt{y}} \right \frac{dy}{dx} = 1 ; (y \neq 0)$		OR
	$dx x e^{-2\sqrt{y}}$		Find the equation of the normal's to the curve $y = x^3 + 2x + 6$
	$\frac{dx}{dy} + \frac{x}{\sqrt{y}} = \frac{e^{-2\sqrt{y}}}{\sqrt{y}}$		which are parallel to the line $x + 14y + 4 = 0$. Why are the fruits good
	$IF = e^{\int \frac{1}{\sqrt{y}} dy} = e^{2\sqrt{y}}$		for health? Importance of fruits: Fruits contain nutrients and
	$\mathbf{n} = \mathbf{c} = -\mathbf{c}$		vitamins which help our body in its proper growth and maintenance. Ans Equation of normal at $(2,18)$ is $x + 14y + 86 = 0$ & Equation of
	solution of given differential equation is given by		normal at (-2,-6) is $x + 14y - 254 = 0$
	$x.IF = \int IF.Qdy + c$	Q.20	
	$xe^{2\sqrt{y}} = \int \frac{e^{-2\sqrt{y}}}{\sqrt{y}}e^{2\sqrt{y}}dy + c$		country's team . So there are three ways of forecasting the result of
	$\frac{1}{\sqrt{y}} \int \frac{1}{\sqrt{y}} \frac{1}{$		any match, one correct and two incorrect. Find the probability
	$xe^{2\sqrt{y}} = \int \frac{1}{\sqrt{y}} dy + c$		forecasting at least three correct result for four matches . Ans: $p = 1$
	N Z		/ 3; q = 2 $/ 3$; n = 4 ;Required probability
	$xe^{2\sqrt{y}} = 2\sqrt{y} + c$		$= p(x=3) + p(x=4) = 4 \cdot \frac{2}{3} \cdot \frac{1}{27} + \frac{1}{81} = \frac{1}{9}$
	Now if $y(1) = 2$. Then $c = e^{2\sqrt{2}} - 2\sqrt{2}$	Q.21	If $x = a(\cos \theta + \log \tan \frac{\theta}{2})$ & $y = a \sin \theta$, find the value of
	$xe^{2\sqrt{y}} = 2\sqrt{y} + e^{2\sqrt{2}} - 2\sqrt{2}$		2
Q.18			$\frac{d^2 y}{d\theta^2} \& \frac{d^2 y}{dx^2} at \theta = \frac{\pi}{4}. \operatorname{Ans}\left(\frac{d^2 y}{d\theta^2}\right) = -a\sin\theta = \frac{-a}{\sqrt{2}}; \left(\frac{d^2 y}{dx^2}\right) = \frac{\tan\theta}{a\cos^3\theta} = \frac{2\sqrt{2}}{a}$
2.10			$d\theta^2 dx^2 \qquad 4 \qquad (d\theta^2) \qquad \sqrt{2} (dx^2) a\cos^3\theta a$
	\rightarrow [4, ∞): $f(x) = x^2 + 4$. Show that f is invertible that find f ⁻¹		OR
	Ans $f^{-1}(y) = \sqrt{y-4}$.		
Q.19	1		Differentiate write $y = \frac{(2x+3)\sqrt{3x-4}}{find} \frac{dy}{dx}$
	of 0.04 cm. Find the approximate error in calculating its volume. If the cost of 1 cm^3 diamond is $R_{0.1}$ 1000, what is the loss to the buyer		Differentiate w.r.t.x: $y = \frac{(2x+3)\sqrt{3x-4}}{(x^2+1)^3}$, find $\frac{dy}{dx}$ Ans
	the cost of 1 cm ^{3} diamond is Rs. 1000, what is the loss to the buyer of the diamond? What lesson do you get from this observation? ans :		$\frac{dy}{(2x+3)\sqrt{3x-4}} \begin{bmatrix} 2 & 4 & 3 & 6x \end{bmatrix}$
	Approximate error in volume = 24.64 cm^3 . Loss to the buyer = (Error		$\overline{dx} = \frac{1}{(x^2+1)^3} \left[\frac{1}{2x+3} + \frac{1}{2(3x-4)} - \frac{1}{(x^2+1)} \right]$
	in volume). (Cost) = Rs. 24,640. Lesson : A small error of 0.04 cm		
	can result in huge loss of Rs. 24,640. So it is needed to be careful		


 Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

 Target Mathematics by- AGYAT GUPTA ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

	Visit us at www.agyatgupta.com							
Q.22	Prove that : $2\tan^{-1}\left[\sqrt{\frac{a-b}{a+b}}\tan\frac{\theta}{2}\right] = \cos^{-1}\left(\frac{b+a\cos\theta}{a+b\cos\theta}\right).$							
	OR							
	If $y = \cot^{-1}(\sqrt{\cos x}) - \tan^{-1}(\sqrt{\cos x})$ prove that $\sin y = \tan^2 \frac{x}{2}$.							
	PART – C							
Q.23	If $A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 4 & -6 \\ 3 & -2 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 20 & 2 & 34 \\ 8 & 16 & -32 \\ 22 & -13 & 7 \end{bmatrix}$ are two square							
	matrices, find AB and hence solve the system of linear equation :							
	$\frac{2}{x} + \frac{3}{y} + \frac{4}{z} = -3;; \frac{5}{x} + \frac{4}{y} - \frac{6}{z} = 4; \frac{3}{x} - \frac{2}{y} - \frac{2}{z} = 6 $ Ans $\begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}$							
Q.24	A small firm manufactures gold rings and chains. The total number of rings and chains manufactured per day is at most 24. It takes 1 hour to make a ring and 30 minutes to make a chain. The maximum number of hours available per day is 16. If the profit on a ring is ₹ 300 and that on a chain is ₹ 190, find the number of rings and chains that should be manufactured per day, so as to earn the maximum profit. Make it as an L.P.P. and solve it graphically. {Ans $z = 300 x$							
	+ 190 y $x + y \le 24$; $x + \frac{1}{2}y \le 16$; $x, y \ge 0$ Z is maximum at B (8,16) i.e., $x = 8$, $y = 16$. Hence 8 gold ring and 16 chains must be produced per day to get a maximum profit of Rs 5,440							
Q.25								

Visit us at www.agyatgupta.com

C(4,-1)

B(2,3)

 Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Visit us at www.agyatgupta.com Q.27 $(3^{x} + 5x^{2} + 7x - 2)dx$ as limit of sums. Ans : Evaluate 8 70 log 3 Q.28 In a remote area there is only one boys college. The post of principal is vacant and it is to be filled. there are three probable candidates i.e. A, B & C for the post of principal. The chances of their selection are in the proportion 4:2:3 respectively. The probability that A, if selected will introduce co-education in that college is .3, the probability of B and c doing the same are .5 and .8 respectively. What is the probability that there will be co-education in the college ? Find the probability that B introduced co-education in college. Which value will be developed among the people of that remote area ? ans : P(E1) = 4/9; P9E20 = 2/9; P(E3) = 3/9 & A= The event to introduce co-education in the college P(A/E1) = .3; P(A/E2) = .5 & P(A/E3) = .8. The probability that there will be co-education in the college = Using the law of total probability = P(E1)P(A/E1) +P(E2)P(A/E2) + P(E3)P(A/E3) = 46/90 = 23/45. The probability that B introduced co-education in college = P(E2/A) = P(E2)P(A/E2)/P(E1)P(A/E1) + P(E2)P(A/E2) + P(E3)P(A/E3) = 5/23. The value is reflected here that the girl/women should be educated at college level . If ladies will be highly educated, reflection can be seen in the families.

OR

There are three coins. One is a biased coin that comes up with tail 60% of the times, the second is also a biased coin that comes up heads 75% of the times and the third is an unbiased coin. One of the

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai 500 ny Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

Visit us at www.agyatgupta.com

	three coins is chosen at random and tossed, it showed heads. What is						
	the probability that it was the unbiased coin? If shopkeeper provides						
	polythene carry bag or cotton carry bags, which type of bag would						
	you like to carry your items and why? Ans : Let E1:selection of first						
	(biased) coin ;E2: selection of second (biased) coin ;E3: selection of						
	1						
	P(E ₁) = P(E ₂) = P(E ₃) = $\frac{1}{3}$ Let A denote the						
	event of getting a head						
	Therefore, $P\left(\frac{A}{E_1}\right) = \frac{40}{100}$, $P\left(\frac{A}{E_2}\right) = \frac{75}{100}$, $P\left(\frac{A}{E_3}\right) = \frac{1}{2}$						
	$P\left(\frac{E_3}{A}\right) = \frac{P(E_3)P\left(\frac{A}{E_3}\right)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right)}$						
	(E_3)						
	$P\left(\frac{1}{A}\right) = \frac{1}{(A)}$						
	$P(E_1)P\left \frac{A}{E_1}\right + P(E_2)P\left \frac{A}{E_1}\right + P(E_3)P\left \frac{A}{E_1}\right $						
	(E_1) (E_2) (E_3)						
	1 1						
	$=$ $3 \cdot 2$ 10						
	1 40 1 75 1 1 33						
	$=\frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{3} \cdot \frac{40}{100} + \frac{1}{3} \cdot \frac{75}{100} + \frac{1}{3} \cdot \frac{1}{2}} = \frac{10}{33}$ ans ; We would like cotton						
	carry bags because polythene carry bags contain toxic chemicals						
	which are very harmful for helth. Also polythene is non-						
	biodegradable so produces pollution in the environment.						
Q.29							
Q.2)	Find the equation of the plane through the intersection of planes $3x - 1$						
	y + 4z = 0 and $x + 3y + 6 = 0$, whose perpendicular distance						
	from the origin equal to 1. Ans: Equation of plane: $-x + 2y - 2z + 3$						
	= 0; 2x + y + 2z + 3 = 0						
	UNLESS YOU BELIEVE, YOU WILL NOT UNDERSTAND.						
1							

Target Mathematics by- AGYAT GUPTA ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi Dar Colony Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)